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ABSTRACT

The use of Pontryagin's Maximum Principle for the large-angle slewing of large

flexible structures usually results in the so-callcd two-point boundary-value problem

(TPBVP), in which many requirements (e.g., minimum time, small flexible amplitude, and

limited control powers, etc.) must be satisfied simultaneously. The successful solution of

this problem depends largely on the usc of an efficient n u merical computational algorithm.

There are many candidate algorithms available for this problem (e.g., 4uasilinearization,

gradient, and shooting, etc.) In this paper, a proposed algorithm, which combines the

quasilinearization method with a time shortening technique and a shooting method, is

applied to the minimum-time, thrce-dimensional, and large-angle maneuver of flexible

spacecraft, particularly the orbiting Spacecraft Control Laboratory Experiment (SCOLE)
configuration.

Theoretically, the nonlinear TPBVP can bc solved only through the shooting method

to find the "exact" switching times for the bang-bang controls. However, computationally,

a suitable guess for the missing initial costates is crucial because the convergence range

of the unknown initial costates is usually narrow, especially for systems with high

dimensions and when a multi-bang-bang control strategy is needed. On the other hand,

the problems of near minimum time attitude maneuver of general rigid spacecraft and fast

slewing of flexible spacecraft have been examined by the authors through a numerical

approach based on the quasilinearization algorithm with a time shortening technique.

Computational results have demonstrated its broad convergence range and insensitivity
to initial costate choices.

Consequently, a combined approach is naturally suggested here to solve the minimum

time slewing problem. That is, in the computational process, the quasilinearization method

is used first to obtain a near minimum time solution. Thcn, the acquired converged initial

costates from the quasilinearization approach are transformed (tailored) to and used as

the initial costate guess for starting the shooting method. Finally, the shooting method

takes over the remaining calculations until the minimum-time solution converges. The

nonlinear equations of motion of the SCOLE arc formulated by using Lagrange's

equations, with the mast modeled as a continuous beam subject to three-dimensional

deformations. The numerical results will be prcscntcd :in(! some related computational
issues will also be discussed.

* Research partially supported by NASA Grant NSG- 1414 and supplements.
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INTRODUCTION

Future space missions (target acquisition, target tracking,

and surveying multiple targets, etc.) require:

• large-angle rotational (attitude) maneuver (slew);

• 3-dimensional (3-D, 3-axis) maneuver;

• large flexible spacecraft maneuver;

• minimum time maneuver.

Application of Pontryagin's Maximum Principle to the nonlinear

slewing problem:

I. Non-Minimum-Time Slews:

i. 3-D Rigid Spacecraft

Junkins, Turner, Vadali, Wie, Bainum and Li, etc.

2. 2-D (Single-Axis Rotation) Flexible Spacecraft

Turner, Junkins, Vadali, Chun, Thompson, Bainum and Li,

etc.

3. 3-D Flexible Spacecraft (SCOLE)

Bainum, Li and Tan.

II. Minimum-Time (Near-Minimum-Time) Slews:

i. 3-D Rigid Spacecraft

Bainum and Li, Vadali, Wie, etc.

2. 2-D Flexible Spacecraft

Singh, Junkins, Vadali, Byers, Bainum and Li.

3. 3-D Minimum-Time Flexible Spacecraft; Using

Quasilinearization Method and Shooting Method:

present paper.
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OUTLINE

i. 3-D Dynamics of Flexible Spacecraft

• State Equations

2. Time Optimal Control Problem Formulation

• Two-Point Boundary-Value Problem (TPBVP)

3. Quasilinearization Method for Near Minimum Time Slew

4. Shooting Method

5. Initial Costate Transformation

• Scale Factors

• Combined Algorithm

6. Numerical Examples

7. Conclusions
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Figure I. Drawing of the orbiting SCOLE configuration.
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3-D DYNAMICS OF FLEXIBLE SPACECRAFT

I. 3-D Deformations of the SCOLE Mast (modal superposition):

1 i I

where

U, V - bending in x and y directions;

- torsion in z direction;

_i, 9i, and _i - modal shape function vector components;

Gi - a scaled modal amplitude associated with the ith mode;

z - coordinate.

II. State Equations:

(1)

= __l_q, where _ =
2 -

0 --@i --@2 --@3

@i 0 _3 --@2

_2 --@3 0 @i

_3 @2 --_1 0

(2)

(3)

y (A +B a)6 + (Cp)(a + D(Z +(E +F a) U (4)

where

q is the 4 x 1 quaternion vector,

= i i B6_] 'Ba [BI_ I B2_ ,.-.,

cs = [cls I c2s I c3s], = J l F9G]Fa [FiG I F2G , ''' i ,

A, Bi, Ci, D, E, F i -constant matrices;

u = [flx fly flz I f2x f2y I f3x f3y Jl f4x f4y] T"
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TIME OPTIMAL CONTROL PROBLEM FORMULATION

Two-Point Boundary-Value Problem (TPBVP)

Initial States and Final Required States:

q(o), a(o), _(o), 13(o)

q( t:), a (t:), _ (t_), _ (t_)

Cost Function:

tftf = (i) dt

Saturation-Bounded Controls :

l ui I_ Uib, i = i, 2, ...,9.

(5)

(6)

(7)

(8)

Hamiltonian:

H = 1 + yT_ + IT[(A +B,)_ +Cp_ +Da +(E +fa) u]

P, 7, k=[ll _2] T - costate vectors associated with q, _, e, B.

Costate Equations (by Pontryagin's Maximum Principle):

(9)

p =

@H i-
- --_p (10)

0q 2-

DTX - (B_X)_ - (FIX)U (11)

_.1 = OH _ 1 [q]p _ [_.-r(A +B_,) ] 0.) - (C13) -r_. (12)
aa) 2

aH _ C_, (13)i_ = al_ y - ( )(o

Constraint Condition (a terminal condition to determine tf):

H _ O, o _ t _ tf (14)

optimal control:

ui = -Uibsign[(E+F_)Tl]i, i = 1 ..... 9. (15)
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QUASILINEARIZATION AND TIME SHORTENING METHOD (QTS)

The near minimum time slewing problem can be solved by using

an iteration approach based on the quasilinearization method.

Different Cost Function (Quadratic Cost Functional):

J = ![t'(uTRu) dC (16)
2_

where R are weighting matrices, tf is the slewing time.

Same Costate Equations Eqs. (10)-(13).

Different Control Expression:

Unconstrained Optimal Control:

@H
- 0, _ u = -R -I(E ,F=)TI (17)au

Constrained Optimal Control:

Uic, if IUicI <Uib

ui = (18)

Uib sgn(uic), if lUicI aUib

Uic = -[R -I(E +F_)TI]i, i = I, 2 ..... 9. (19)

tf can be obtained by sequentially shortening the slewing time.

Motivation:

Is this bang-bang control the same as that obtained by using

the shooting method? (Do these controls have the same time

histories?) If the answer is yes, the results from the QTS

approach may be used as the starting solution for the shooting

method. (Here, we use the numerical results to prove the

equivalence.)
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SHOOTING METHOD

Formulation of the TPBVP:

J_(t) = FiX(t), u(t)], 0 _ t _ t_

X(O) : K[D]

L[X(tf) , D, tf] = 0

u; = -sign {gi[X(t)] }, i = 1, .... m.

(20)

(21)

(22)

(23)

D - the n x 1 unknown initial costate vector;

L[X(tf), D, tf] - (n+l) x 1 terminal constraint vector;

gi (i=i, ..., m) - the switching functions.

Initial Boundary Conditions Correction Process:

To satisfy: L[X(tf), D, tf] = 0, D and tf need to be corrected at

each iteration:

(24)

where

[8ock1tJk) :-", _tJ k)
(25)

6t(_ kl = 8D 8tf L[X TM (tf) , D (k) ]

D (k) and t_ k) - the values of D and tf at iteration k;

scalar Gk (0 _ Gk _ i) is chosen as:

min I i, P II[D (k),
_k

[ U[6D (k),

O<p<l

(26)

(27)
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A general algorithm suggested by Lastman has been used in our

calculations and can be recast into the following block diagram:

INITIALIZE:

Unknown CostateS,(o)D(°) [Slewing Time, t r

l
INTEGRATE: X : F(X, u),

SOLVE:

O_ t_ t (W}
f

u : -sign [g (x)]
i t

g (X)=0, by Newton's Method,
i

Find Switching Times, t (k)
J

1
CHECK:

Terminal Constraints

I Li[x(k'(t ), t ] 1

I NO

_ ?

CORRECT:
D(k+1)= D(w) + _D (k)

t(k+1}= t(_) + At (k)
f f f

_ST ES

OP

Summary:

I. Difficulty in initialization for the present nonlinear, multi-

input system control problem. Improper choice of D and tf will

result in singular correction matrix, and program diverges.

II. Advantages and disadvantages of the two methods:

• Quasilinearization method and time shortening technique

has good convergence properties;

• Shooting method generates more accurate final results,

but is sensitive to starting solution;

• A combined technique is needed.
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INITIAL COSTATE TRANSFORMATION

Different Costate Solutions:

Although the costate equations are the same, the initial

costates from these two different formulations of the same problem

are different:

i. Initial costates, p(0), _(0), and X(0) from the QTS

method are large;

• p(0), 7(0), and l(0) from the shooting method are finite•

Assumed Relation Between Them:

p(o) -- kl_(o),

Y(o) = k2¥(o),

where k 1 < l, and k 2 < 1

i

_._(0) = k1_1(0),

_2(0) = k2L 2(0) .

are scale factors to be determined.

(28)

Scale Factors

Ass%_med Eiqen-Axis Rotation for Riqid Spacecraft:

= ee, _ = e _ (29)

e = [e I e 2 e3] T - a unit vector representing the eigen-axis,

8 - the rotation angle about this axis•

Resultinq Four Related Equations (from rigid dynamic equations) :

e 0 = f02 + i-IBu (30)

f - 3 x 1 constant vector; and

= eTf 02 + eTI-IBU (31)

• Let "p" = the "principal" axis among the axes i, 2, and 3,

about which the rotation requires the largest tf;

• Let "4" = Eq. (31).
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Further Simplification of Equations:

: bivi, bi>0, ]villi, i=1,2,3,4.

"Averaqe" Values of the Initial Costates:

Pa = 2/(be0 f) 1/2, I a = I/b a, tfa = 2 (Or/b a) i/2

Of

ba= 2<pbp+ 2<4b,,2<_+ 2<_= I

- the required rotation angle about the eigen-axis.

k I and k 2 :

2<1 = Pa/IFp(O) I, k 2 = tall=Am(o))

The Initial Costates for Startinq the Shootinq Method:

p(0) = kl_(0), 11(0) = 2<111(0),

m

y(0) : k2_(0), 12(0) : k212(0) .
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NUMERICAL EXAMPLES

Given Slewing Conditions (for all cases considered here):

1. Rest-to-rest slews, i.e.,

_(0)=0, _<t_)=0,

a(0):0, p(o)=0, a(tf)=o, p(tf)=0.

2. Three (3) control variables are used.

Example 1 (a scaled rigid spacecraft, I = ll):

q(tf) [•877582561, 434965534, 142572492, 142572492] T• • • ,

q(0)=[l.0, 0.0, 0.0, 0.0] T, 8f =i rad, I = Diag(l.0, 0.9, 0.6),

R = Diag(l.0, 0.7, 0.4), p = I, k I = kp = k 4 = 0.5.

QTS Method Results:

tf = 1.8 sec. By transformation, the initial costates for

starting the shooting method are obtained:

p(0) = -.248420 , l(0) = -.0955727 ,

•415782 .0481507 (s)

Shootinq Method Results:

p = 0.i, solutions are obtained in 6 iterations (to 5 digits):

-1.74008]
p*(0) = -.267243 ,

.462349
I -.770403

_*(0) = -.115614

.0606796

t_=1.76403
l

(s)

The converged values of the switching times are:

u i

ti(s)

u 3

0•314356

u 2

0.701830

u I

0.874531

u 3

i. 18114

u 2

1.53158
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Example 2:

Maneuver of the rigidized SCOLE model. The scaled inertial

matrix (set 133 = i. 0) :

.16902

-. 001061798

.01619427

-.001061798

.9948471

-.007354633

.01619427

-. 007354633

1.0

• Simultaneous 75 °, 30 °, 45 ° slew about roll, pitch, yaw axes;

• u = three torquers on the Shuttle, Uib = 10,000 ft-lb;

• R = Diag(l, i, I);

• kp =k 3 =0.75, k 4 = 0.25.

Averaqe Values:

Pa =1.01466, la =.461915

Initial Costates for Startinq Shootinq Method:

p(O) = 1.24510 , _(0) = .456237

-1.01466 -.461519

The tf = 1.6407 sec from the QTS method is used as t_ 0) in the

shooting method, p = 0.0035. The final converged initial costates:

.00237568 )
p*(0) = 1.32922 ,

-i. 08389

_.* (0) =

-.00773848 ] ,

.496600 1 tf =I. 64066
I

-. 502920 (s)
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(a) Attitude Angles (deg)
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(b2) Pitch control Switching Func.
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J
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time (sec)

Fig. 2. Rigid SCOLE Maneuver (Scaled Model)

75-30-45 (deg) (Shooting Method)
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Example 3:

The maneuver of the both rigidized and flexible orbiting SCOLE

model is considered (using

parameters).

• 90 ° slew about roll axis.

the original SCOLE challenge

Although the expected motion is

"single-axis" rotation, the minimum-time dynamic maneuver

process is not necessarily a single-axis rotation because of

the offset inertia distribution of the SCOLE model. (The three

axes for the three control torquers are not principal axes).

Therefore, the present slew is a 3-D slew.

• u = three torquers on the Shuttle, Uib = I0,000 ft-lb;

• R = Diag(l.E-4, I.E-4, I.E-4) ;

• kp =k I =i.

• Two flexible modes (the first and the second) are included.

Average Values of Initial Costates:

Pa =24.7475, i a =120.242

Initial Costates for Startinq Shootinq Method:

p(0) _(0) 11(0 ) X201_h_-
(Rigid) (Flexible) (Rigid) (Flexible)

.00000E0 .00000E0 -.90512E-3 .12024E3

.24747E2 .24747E2 .46390E-2 .67830EI

-.19219E0 -.I1478E0 .I1671E2

.25248EI .23758EI

.12024E3

.51236EI

.I0969E2

.I0717E-I

-.35993E-I

The tf = 27.3992 seconds from the QTS method is used as t_ O) in the

shooting method. The final converged initial costates:

p(0) _(0) 11(0) l=IQ/__
(Rigid) (Flexible) (Rigid) (Flexible)

.00000E0 .00000E0 -.87221E-3 .I1894E3

.24422E2 .23767E2 .44563E-2 .67130EI

-.18880E0 -.II001E0 .I1544E2

.24825EI .22818EI

.I1587E3

.49375EI

.I0570E2

.I0331E-I

-.34685E-I
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The Hamiltonian, H, is observed as a constant during each iteration

and is iteratively reduced to the final value:

H = 1.2000E-9

The time histories of the slews are plotted in Fig. 3 to

Fig. 6. In these figures, the results for the attitude angles, the

mode amplitudes, the control torques, and the switching functions

are presented, whenever applicable.

Fig. 3 shows the rigid SCOLE maneuver by using the QTS method

and Fig. 4 shows the rigid SCOLE maneuver by using the shooting

method. The results show that the solutions by using the two

methods are very close. It is also noted that, during the slew, the

yawing control, u 3, switches twice consecutively before other

controls (rolling control u I or pitching control u 2) switch.

Figs. 5 and 6 show the flexible SCOLE maneuver by using

the QTS and the shooting methods, respectively. Again, the results

from both methods are close. Due to the inclusion of the flexible

modes, the switching number for every control is tripled or even

more (23 for u3) compared with the results for the rigid SCOLE

maneuver. The modal amplitudes are very small and the associated

vibration of the reflector of the SCOLE and the "Line of Sight" are

also very small.
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Fig. 3 Rigid SCOLE Maneuver,

Roll Angle • 90 ° (QTS Method)
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Fig. 4 Rigid SCOLE Maneuver,

Roll Angle - 90 ° (Shooting Method)
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Fig. 6 Flexible SCOLE Maneuver,

Roll Angle - 90 ° (Shooting Method)
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(cl) Roll Control (1E4 ft-lb) Switching Func.
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Fig. 6 (Cont'd)

Roll Angle [] 90 °

30

Flexible SCOLE Maneuver,

(Shooting Method)
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CONCLUSIONS

I. The QTS method is stable for relatively coarse choices of the

unknown initial costates, and the shooting method is not.

2. The QTS method usually results in very large values of the

costates which may lead to the numerical overflow in the

calculation process, if the "exact" (numerically) switching

times are to be found, while the shooting method does not have

this problem and exact switching times can be obtained

iteratively.

3. A technique to combine these two methods is proposed.

4. The estimated initial values of the costates, p(0), 7(0), and

_(0), based on the solution from the QTS method, are very

close to the converged values of these parameters in the

shooting method and hence the convergence of the shooting

method has been improved.

5. The costates from both methods are proportional.

6. The control histories from both methods are the same and may

imply the uniqueness of the control for the slewing problem.

7. The application of this method to the minimum time maneuver of

other flexible spacecraft is suggested.
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